

DYNAMIC PROGRAMMING

Slides from Prof. Daniel Marx

The SET COVER problem

Input: A set family \mathcal{F} over a universe U and an integer k

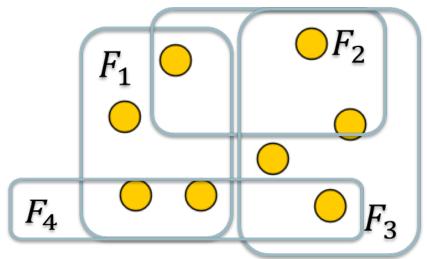
Parameter: |U|

Question: Is there a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ of at most k sets,

such that $\bigcup_{F \in \mathcal{F}}, F = U$?

• The subfamily \mathcal{F}' covers the universe U

- SET COVER parameterized by the universe size is FPT
 - Algorithm with running time $2^{|U|} \cdot (|U| + |\mathcal{F}|)^c$
 - Based on dynamic programming



Dynamic programming for SET COVER

- Let $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$
- We define a DP table for $X \subseteq U$ and $j \in \{0,1,...,m\}$ $T[X,j] = \min \text{ nr. of sets from } F_1,...,F_j \text{ needed to cover } X$ $\text{Or } +\infty \text{ if impossible}$
- The value T[U, m] gives the minimum size of a set cover
 - To solve the problem, compute T using base cases and a recurrence

Filling the dynamic programming table

• T[X,j] = min nr. of sets from $F_1, ..., F_j$ needed to cover X

Base case:
$$j = 0$$

 $T[X,j] = 0$ if $X = \emptyset$, otherwise it is $+\infty$

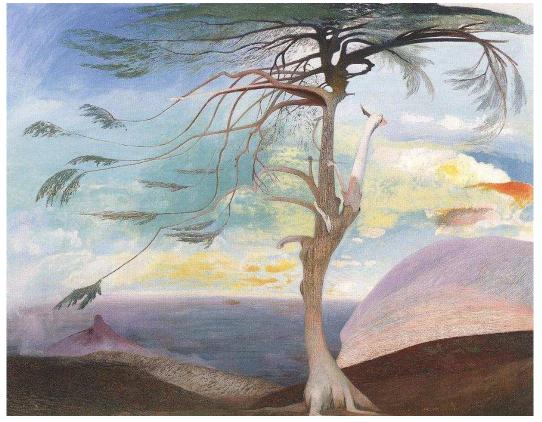
Recursive step:
$$j > 0$$

$$T[X,j] = \min(T[X,j-1], 1 + T[X \setminus F_j, j-1])$$

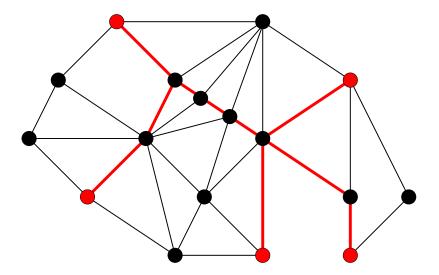
- Skip set F_j , or pay for F_j and afterwards cover $X \setminus F_j$
- Each entry can be computed in polynomial time $-(|\mathcal{F}|+1)\cdot 2^{|U|}$ entries in total

More on dynamic programming

- Dynamic programming is a memory-intensive algorithmic paradigm that yields FPT algorithms in various situations
 - Here: dynamic programming over **subsets** of U
 - Later: dynamic programming over tree decompositions
- Research challenge:
 - Determine whether the $2^{|U|}$ factor can be improved to $(2-\epsilon)^{|U|}$ for some $\epsilon>0$



Task: Given a graph G with weighted edges and a set S of k vertices, find a tree T of minimum weight that contains S.



Known to be NP-hard. For fixed k, we can solve it in polynomial time: we can guess the Steiner points and the way they are connected.

Theorem: Steiner Tree is FPT parameterized by k = |S|.

Solution by dynamic programming. For $v \in V(G)$ and $X \subseteq S$,

c(v, X) := minimum cost of a Steiner tree of X that contains v

d(u, v) :=distance of u and v

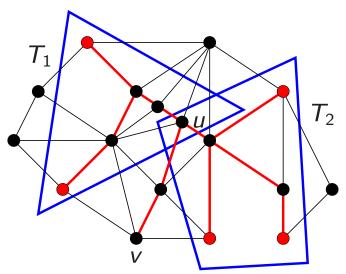
Recurrence relation:

$$c(v,X) = \min_{\substack{u \in V(G) \\ \emptyset \subset X' \subset X}} c(u,X' \setminus u) + c(u,(X \setminus X') \setminus u) + d(u,v)$$

Recurrence relation:

$$c(v,X) = \min_{\substack{u \in V(G) \\ \emptyset \subset X' \subset X}} c(u,X' \setminus u) + c(u,(X \setminus X') \setminus u) + d(u,v)$$

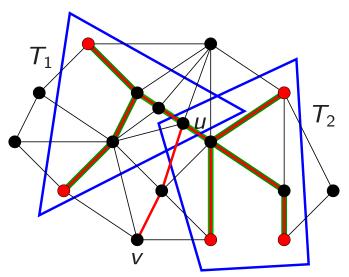
 \leq : A tree T_1 realizing $c(u, X' \setminus u)$, a tree T_2 realizing $c(u, (X \setminus X') \setminus u)$, and the path uv gives a (superset of a) Steiner tree of X containing v.



Recurrence relation:

$$c(v,X) = \min_{\substack{u \in V(G) \\ \emptyset \subset X' \subset X}} c(u,X' \setminus u) + c(u,(X \setminus X') \setminus u) + d(u,v)$$

Suppose T realizes c(v,X), let T' be the minimum subtree containing X. Let u be a vertex of T' closest to v. If |X| > 1, then there is a component C of $T \setminus u$ that contains a subset $\emptyset \subset X' \subset X$ of terminals. Thus T is the disjoint union of a tree containing $X' \setminus u$ and u, a tree containing $(X \setminus X') \setminus u$ and u, and the path uv.



Recurrence relation:

$$c(v,X) = \min_{\substack{u \in V(G) \\ \emptyset \subset X' \subset X}} c(u,X' \setminus u) + c(u,(X \setminus u) \setminus X') + d(u,v)$$

Running time:

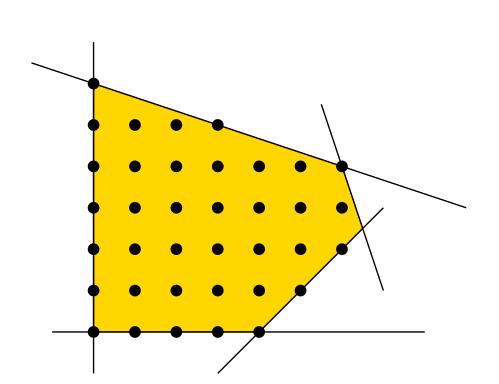
 $2^k|V(G)|$ variables c(v,X), determine them in increasing order of |X|. Variable c(v,X) can be determined by considering $2^{|X|}$ cases. Total number of cases to consider:

$$\sum_{X \subseteq T} 2^{|X|} = \sum_{i=1}^k \binom{k}{i} 2^i \le (1+2)^k = 3^k.$$

Running time is $O^*(3^k)$.

Note: Running time can be reduced to $O^*(2^k)$ with clever techniques.

Integer Linear Programming



Integer Linear Programming

Linear Programming (LP): important tool in (continuous) combinatorial optimization. Sometimes very useful for discrete problems as well.

$$\max c_1 x_1 + c_2 x_2 + c_3 x_3$$
 s.t. $x_1 + 5x_2 - x_3 \leq 8$ $2x_1 - x_3 \leq 0$ $3x_2 + 10x_3 \leq 10$ $x_1, x_2, x_3 \in \mathbb{R}$

Fact: It can be decided if there is a solution (feasibility) and an optimum solution can be found in polynomial time.

Integer Linear Programming

Integer Linear Programming (ILP): Same as LP, but we require that every x_i is integer.

Very powerful, able to model many NP-hard problems. (Of course, no polynomial-time algorithm is known.)

Theorem: ILP with p variables can be solved in time $p^{O(p)} \cdot n^{O(1)}$.

Task: Given strings $s_1, ..., s_k$ of length L over alphabet Σ , and an integer d, find a string s (of length L) such that $d(s, s_i) \le d$ for every $1 \le i \le k$.

Note: $d(s, s_i)$ is the Hamming distance.

Theorem: CLOSEST STRING parameterized by k is FPT.

Theorem: CLOSEST STRING parameterized by *d* is FPT.

Theorem: CLOSEST STRING parameterized by *L* is FPT.

Theorem: CLOSEST STRING is NP-hard for $\Sigma = \{0, 1\}$.

Task: Given strings $s_1, ..., s_k$ of length L over alphabet Σ , and an integer d, find a string s (of length L) such that $d(s, s_i) \le d$ for every $1 \le i \le k$.

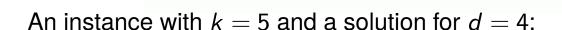
Note: $d(s, s_i)$ is the Hamming distance.

Theorem: CLOSEST STRING parameterized by k is FPT.

Theorem: CLOSEST STRING parameterized by *d* is FPT.

Theorem: CLOSEST STRING parameterized by *L* is FPT.

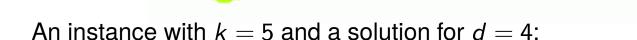
Theorem: CLOSEST STRING is NP-hard for $\Sigma = \{0, 1\}$.



- s₁ CBDCCACBB
- s₂ ABDBCABDB
- s₃ CDDBACCBD
- s₄ DDABACCBD
- s₅ ACDBDDCBC

ADDBCACBD

Each column can be described by a partition \mathcal{P} of [k].



- s₁ CBDCCACBB
- s₂ ABDBCABDB
- s₃ CDDBACCBD
- s₄ DDABACCBD
- s₅ ACDBDDCBC

ADDBCACBD

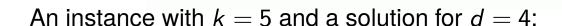
Each column can be described by a partition \mathcal{P} of [k].

An instance with k = 5 and a solution for d = 4:

- s₁ CBDCCACBB
- s₂ ABDBCABDB
- s₃ CDDBACCBD
- s₄ DDABACCBD
- s₅ ACDBDDCBC

ADDBCACBD

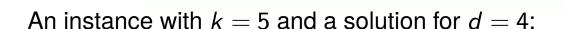
Each column can be described by a partition \mathcal{P} of [k].



- s₁ CBDCCACBB
- s₂ ABDBCABDB
- s₃ CDDBACCBD
- s₄ DDABACCBD
- s₅ ACDBDDCBC

ADDBCACBD

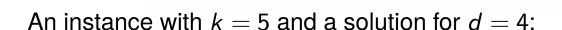
Each column can be described by a partition \mathcal{P} of [k].



- s₁ CBDCCACBB
- s₂ ABDBCABDB
- s₃ CDDBACCBD
- s₄ DDABACCBD
- s₅ ACDBDDCBC

ADDBCACBD

Each column can be described by a partition \mathcal{P} of [k].



- s₁ CBDCCACBB
- s₂ ABDBCABDB
- s₃ CDDBACCBD
- s₄ DDABACCBD
- s₅ ACDBDDCBC

ADDBCACBD

Each column can be described by a partition \mathcal{P} of [k].

Each column can be described by a partition \mathcal{P} of [k].

The instance can be described by an integer $c_{\mathcal{P}}$ for each partition \mathcal{P} : the number of columns with this type.

Describing a solution: If C is a class of \mathcal{P} , let $x_{\mathcal{P},C}$ be the number of type \mathcal{P} columns where the solution agrees with class C.

There is a solution iff the following ILP has a feasible solution:

$$\sum_{C \in \mathcal{P}} x_{\mathcal{P},C} \leq c_{\mathcal{P}}$$
 $\forall partition \mathcal{P}$ $\sum_{i \notin C,C \in \mathcal{P}} x_{\mathcal{P},C} \leq d$ $\forall 1 \leq i \leq k$ $x_{\mathcal{P},C} \geq 0$ $\forall \mathcal{P},C$

Number of variables is $\leq B(k) \cdot k$, where B(k) is the no. of partitions of [k] \Rightarrow The ILP algorithm solves the problem in time $f(k) \cdot n^{O(1)}$.

Graph Minors

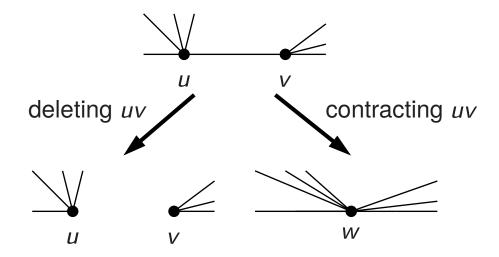
Paul Seymour

Graph Minors

- Some consequences of the Graph Minors Theorem give a quick way of showing that certain problems are FPT.
- 6 However, the function f(k) in the resulting FPT algorithms can be HUGE, completely impractical.
- History: motivation for FPT.
- Parts and ingredients of the theory are useful for algorithm design.
- New algorithmic results are still being developed.

Graph Minors

Definition: Graph H is a **minor** G ($H \le G$) if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.

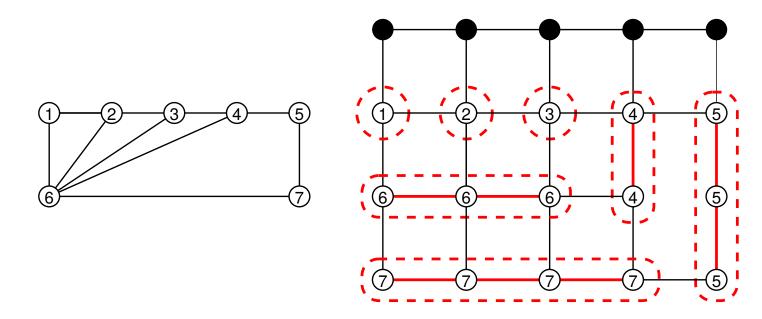


Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., it is not a forest).

Graph minors

Equivalent definition: Graph H is a **minor** of G if there is a mapping ϕ that maps each vertex of H to a connected subset of G such that

- $\phi(u)$ and $\phi(v)$ are disjoint if $u \neq v$, and
- if $uv \in E(G)$, then there is an edge between $\phi(u)$ and $\phi(v)$.



Minor closed properties

Definition: A set \mathcal{G} of graphs is **minor closed** if whenever $G \in \mathcal{G}$ and $H \leq G$, then $H \in \mathcal{G}$ as well.

Examples of minor closed properties:

planar graphs acyclic graphs (forests) graphs having no cycle longer than k empty graphs

Examples of not minor closed properties:

complete graphs regular graphs bipartite graphs

Forbidden minors

Let \mathcal{G} be a minor closed set and let \mathcal{F} be the set of "minimal bad graphs": $H \in \mathcal{F}$ if $H \notin \mathcal{G}$, but every proper minor of H is in \mathcal{G} .

Characterization by forbidden minors:

$$G \in \mathcal{G} \iff \forall H \in \mathcal{F}, H \not\leq G$$

The set \mathcal{F} is the **obstruction set** of property \mathcal{G} .

Forbidden minors

Let \mathcal{G} be a minor closed set and let \mathcal{F} be the set of "minimal bad graphs": $H \in \mathcal{F}$ if $H \notin \mathcal{G}$, but every proper minor of H is in \mathcal{G} .

Characterization by forbidden minors:

$$G \in \mathcal{G} \iff \forall H \in \mathcal{F}, H \not\leq G$$

The set \mathcal{F} is the **obstruction set** of property \mathcal{G} .

Theorem: [Wagner] A graph is planar if and only if it does not have a K_5 or $K_{3,3}$ minor.

In other words: the obstruction set of planarity is $\mathcal{F} = \{K_5, K_{3,3}\}$.

Does every minor closed property have such a finite characterization?

Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property \mathcal{G} has a finite obstruction set.

Note: The proof is contained in the paper series "Graph Minors I–XX".

Note: The size of the obstruction set can be astronomical even for simple

properties.

Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property \mathcal{G} has a finite obstruction set.

Note: The proof is contained in the paper series "Graph Minors I–XX".

Note: The size of the obstruction set can be astronomical even for simple

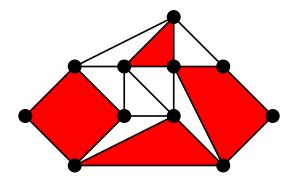
properties.

Theorem: [Robertson and Seymour] For every fixed graph H, there is an $O(n^3)$ time algorithm for testing whether H is a minor of the given graph G.

Corollary: For every minor closed property \mathcal{G} , there is an $O(n^3)$ time algorithm for testing whether a given graph G is in \mathcal{G} .

Applications

PLANAR FACE COVER: Given a graph G and an integer k, find an embedding of planar graph G such that there are k faces that cover all the vertices.



One line argument:

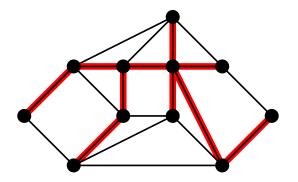
For every fixed k, the class \mathcal{G}_k of graphs of yes-instances is minor closed.

For every fixed k, there is a $O(n^3)$ time algorithm for Planar Face Cover.

Note: non-uniform FPT.

Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, find a spanning tree with **at least** k leaves.



Technical modification: Is there such a spanning tree for at least one component of *G*?

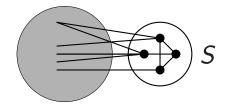
One line argument:

For every fixed k, the class \mathcal{G}_k of no-instances is minor closed.

For every fixed k, k-LEAF SPANNING TREE can be solved in time $O(n^3)$.

9 + k vertices

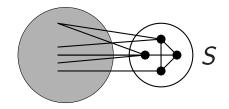
Let \mathcal{G} be a graph property, and let $\mathcal{G} + kv$ contain graph G if there is a set $S \subseteq V(G)$ of k vertices such that $G \setminus S \in \mathcal{G}$.



Lemma: If \mathcal{G} is minor closed, then $\mathcal{G} + kv$ is minor closed for every fixed k. \Rightarrow It is (nonuniform) FPT to decide if G can be transformed into a member of \mathcal{G} by deleting k vertices.

9 + k vertices

Let \mathcal{G} be a graph property, and let $\mathcal{G} + kv$ contain graph G if there is a set $S \subseteq V(G)$ of k vertices such that $G \setminus S \in \mathcal{G}$.



Lemma: If \mathcal{G} is minor closed, then $\mathcal{G} + kv$ is minor closed for every fixed k. \Rightarrow It is (nonuniform) FPT to decide if G can be transformed into a member of \mathcal{G} by deleting k vertices.

- If $G = \text{forests} \Rightarrow G + kv = \text{graphs that can be made acyclic by the deletion of } k$ vertices $\Rightarrow \text{FEEDBACK VERTEX SET is FPT.}$
- If $\mathcal{G} = \text{planar graphs} \Rightarrow \mathcal{G} + kv = \text{graphs that can be made planar by the deletion of } k \text{ vertices } (k\text{-apex graphs}) \Rightarrow k\text{-Apex Graph is FPT.}$
- If $\mathcal{G} = \text{empty graphs} \Rightarrow \mathcal{G} + kv = \text{graphs with vertex cover number at most } k \Rightarrow Vertex Cover is Fixed Parameter Algorithms p.65/98$